NEW RULE FOR CHOICE OF THE REGULARIZATION PARAMETER IN (ITERATED) TIKHONOV METHOD

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Parameter Choice Method for Tikhonov Regularization

Abstract. A new parameter choice method for Tikhonov regularization of discrete ill-posed problems is presented. Some of the regularized solutions of a discrete ill-posed problem are less sensitive than others to the perturbations in the right-hand side vector. This method chooses one of the insensitive regularized solutions using a certain criterion. Numerical experiments show that the new met...

متن کامل

Nonstationary Iterated Tikhonov Regularization

A convergence rate is established for nonstationary iterated Tik-honov regularization, applied to ill-posed problems involving closed, densely deened linear operators, under general conditions on the iteration parameters. It is also shown that an order-optimal accuracy is attained when a certain a posteriori stopping rule is used to determine the iteration number.

متن کامل

A Regularization Parameter for Nonsmooth Tikhonov Regularization

In this paper we develop a novel criterion for choosing regularization parameters for nonsmooth Tikhonov functionals. The proposed criterion is solely based on the value function, and thus applicable to a broad range of functionals. It is analytically compared with the local minimum criterion, and a posteriori error estimates are derived. An efficient numerical algorithm for computing the minim...

متن کامل

Multi-Parameter Tikhonov Regularization

We study multi-parameter Tikhonov regularization, i.e., with multiple penalties. Such models are useful when the sought-for solution exhibits several distinct features simultaneously. Two choice rules, i.e., discrepancy principle and balancing principle, are studied for choosing an appropriate (vector-valued) regularization parameter, and some theoretical results are presented. In particular, t...

متن کامل

Improving the Spatial Solution of Electrocardiographic Imaging: A New Regularization Parameter Choice Technique for the Tikhonov Method

The electrocardiographic imaging (ECGI) inverse problem is highly ill-posed and regularization is needed to stabilize the problem and to provide a unique solution. When Tikhonov regularization is used, choosing the regularization parameter is a challenging problem. Mathematically, a suitable value for this parameter needs to fulfill the Discrete Picard Condition (DPC). In this study, we propose...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Modelling and Analysis

سال: 2009

ISSN: 1392-6292,1648-3510

DOI: 10.3846/1392-6292.2009.14.187-198